最新公告
  • 欢迎您光临淘气哥素材网,牛年活动正在如火如荼进行中,通过卡密充值八折!入驻会员
  • Python机器学习——预测分析核心算法_Python教程

    Python机器学习——预测分析核心算法_Python教程 最后编辑:2020-09-13
    增值服务: 自动发货 使用说明 安装指导 环境配置二次开发BUG修复

    资源名称:Python机器学习——预测分析核心算法

    内容简介:

    在学习和研究机器学习的时候,面临令人眼花缭乱的算法,机器学习新手往往会不知

    所措。本书从算法和Python 语言实现的角度,帮助读者认识机器学习。

    书专注于两类核心的“算法族”,即惩罚线性回归和集成方法,并通过代码实例来

    展示所讨论的算法的使用原则。全书共分为7 章,详细讨论了预测模型的两类核心算法、预测模型的构建、惩罚线性回归和集成方法的具体应用和实现。

    本书主要针对想提高机器学习技能的Python 开发人员,帮助他们解决某一特定的项

    目或是提升相关的技能。

    作者简介:

    Michael Bowles 在硅谷黑客道场教授机器学习,提供机器学习项目咨询,同时参与了多家创业公司,涉及的领域包括生物信息学、金融高频交易等。他在麻省理工学院获得助理教授教职后,创建并运营了两家硅谷创业公司,这两家公司都已成功上市。他在黑客道场的课程往往听者云集并且好评颇多。

    资源目录:

    第1章关于预测的两类核心算法

    1.1为什么这两类算法如此有用

    1.2什么是惩罚回归方法

    1.3什么是集成方法

    1.4算法的选择

    1.5构建预测模型的流程

    1.5.1构造一个机器学习问题

    1.5.2特征提取和特征工程

    1.5.3确定训练后的模型的性能

    1.6各章内容及其依赖关系

    1.7小结

    1.8参考文献

    第2章通过理解数据来了解问题

    2.1“解剖”一个新问题

    2.1.1属性和标签的不同类型决定模型的选择

    2.1.2新数据集的注意事项

    2.2分类问题:用声纳发现未爆炸的水雷

    2.2.1“岩石vs水雷”数据集的物理特性

    2.2.2“岩石vs水雷”数据集统计特征

    2.2.3用分位数图展示异常点

    2.2.4类别属性的统计特征

    2.2.5利用PythonPandas对“岩石vs水雷”数据集进行统计分析

    2.3对“岩石vs水雷数据集”属性的可视化展示

    2.3.1利用平行坐标图进行可视化展示

    2.3.2属性和标签的关系可视化

    2.3.3用热图(heatmap)展示属性和标签的相关性

    2.3.4对“岩石vs

    2.4基于因素变量的实数值预测鲍鱼的年龄

    2.4.1回归问题的平行坐标图—鲍鱼问题的变量关系可视化

    2.4.2回归问题如何使用关联热图—鲍鱼问题的属性对关系的可视化

    2.5用实数值属性预测实数值目标:评估红酒口感

    2.6多类别分类问题:它属于哪种玻璃

    小结

    参考文献

    第3章预测模型的构建:平衡性能、复杂性以及大数据

    3.1基本问题:理解函数逼近

    3.1.1使用训练数据

    3.1.2评估预测模型的性能

    3.2影响算法选择及性能的因素——复杂度以及数据

    3.2.1简单问题和复杂问题的对比

    3.2.2一个简单模型与复杂模型的对比

    3.2.3影响预测算法性能的因素

    3.2.4选择一个算法:线性或者非线性

    3.3度量预测模型性能

    3.3.1不同类型问题的性能评价指标

    3.3.2部署模型的性能模拟

    3.4模型与数据的均衡

    3.4.1通过权衡问题复杂度、模型复杂度以及数据集规模来选择模型

    3.4.2使用前向逐步回归来控制过拟合

    3.4.3评估并理解你的预测模型

    3.4.4通过惩罚回归系数来控制过拟合——岭回归

    小结

    参考文献

    第4章惩罚线性回归模型

    4.1为什么惩罚线性回归方法如此有效

    4.1.1足够快速地估计系数

    4.1.2变量的重要性信息

    4.1.3部署时的预测足够快速

    4.1.4性能可靠

    4.1.5稀疏解

    4.1.6问题本身可能需要线性模型

    4.1.7什么时候使用集成方法

    4.2惩罚线性回归:对线性回归进行正则化以获得最优性能

    4.2.1训练线性模型:最小化错误以及更多

    4.2.2向OLS公式中添加一个系数惩罚项

    4.2.3其他有用的系数惩罚项:Manhattan以及ElasticNet

    4.2.4为什么套索惩罚会导致稀疏的系数向量

    4.2.5ElasticNet惩罚项包含套索惩罚项以及岭惩罚项

    4.3求解惩罚线性回归问题

    4.3.1理解最小角度回归与前向逐步回归的关系

    4.3.2LARS如何生成数百个不同复杂度的模型

    4.3.3从数百个LARS生成结果中选择最佳模型

    4.3.4使用Glmnet:非常快速并且通用

    4.4基于数值输入的线性回归方法的扩展

    4.4.1使用惩罚回归求解分类问题

    4.4.2求解超过2种输出的分类问题

    4.4.3理解基扩展:使用线性方法来解决非线性问题

    4.4.4向线性方法中引入非数值属性

    小结

    参考文献

    第5章使用惩罚线性方法来构建预测模型

    5.1惩罚线性回归的Python包

    5.2多变量回归:预测红酒口感

    5.2.1构建并测试模型以预测红酒口感

    5.2.2部署前在整个数据集上进行训练

    5.2.3基扩展:基于原始属性扩展新属性来改进性能

    5.3二分类:使用惩罚线性回归来检测未爆炸的水雷

    5.3.1构建部署用的岩石水雷分类器

    5.4多类别分类—分类犯罪现场的玻璃样本

    小结

    参考文献

    第6章集成方法

    6.1二元决策树

    6.1.1如何利用二元决策树进行预测

    6.1.2如何训练一个二元决策树

    6.1.3决策树的训练等同于分割点的选择

    6.1.4二元决策树的过拟合

    6.1.5针对分类问题和类别特征所做的修改

    6.2自举集成:Bagging算法

    6.2.1Bagging算法是如何工作的

    6.2.2Bagging算法小结

    6.3梯度提升法(GradientBoosting)

    6.3.1梯度提升法的基本原理

    6.3.2获取梯度提升法的最佳性能

    6.3.3针对多变量问题的梯度提升法

    6.3.4梯度提升方法的小结

    6.4随机森林

    6.4.1随机森林:Bagging加上随机属性子集

    6.4.2随机森林的性能

    6.4.3随机森林小结

    6.5小结

    6.6参考文献

    第7章用Python构建集成模型

    7.1用Python集成方法工具包解决回归问题

    7.1.1构建随机森林模型来预测红酒口感

    7.1.2用梯度提升预测红酒品质

    7.2用Bagging来预测红酒口感

    7.3Python集成方法引入非数值属性

    7.3.1对鲍鱼性别属性编码引入Python随机森林回归方法

    7.3.2评估性能以及变量编码的重要性

    7.3.3在梯度提升回归方法中引入鲍鱼性别属性

    7.3.4梯度提升法的性能评价以及变量编码的重要性

    7.4用Python集成方法解决二分类问题

    7.4.1用Python随机森林方法探测未爆炸的水雷

    7.4.2构建随机森林模型探测未爆炸水雷

    7.4.3随机森林分类器的性能

    7.4.4用Python梯度提升法探测未爆炸水雷

    7.4.5梯度提升法分类器的性能

    7.5用Python集成方法解决多类别分类问题

    7.5.1用随机森林对玻璃进行分类

    7.5.2处理类不均衡问题

    7.5.3用梯度提升法对玻璃进行分类

    7.5.4评估在梯度提升法中使用随机森林基学习器的好处

    7.6算法比较

    小结

    参考文献

    资源截图:

    Python机器学习——预测分析核心算法_Python教程 Python教程 第1张

    猜你在找

    淘气哥素材网https://www.tqge.com/国内最专业的站长资源平台
    淘气哥素材网-网站源码设计素材营销软件免费下载 » Python机器学习——预测分析核心算法_Python教程

    常见问题FAQ

    免费下载或者VIP会员专享资源能否直接商用?
    本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
    提示下载完但解压或打开不了?
    最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。若排除这种情况,可在对应资源底部留言,或 联络我们.。
    找不到素材资源介绍文章里的示例图片?
    对于PPT,KEY,Mockups,APP,网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。
    淘气哥
    一个高级程序员模板开发平台
    • 2020-09-13Hi,初次和大家见面了,请多关照!

    售后服务:

    • 售后服务范围 1、商业模板使用范围内问题免费咨询
      2、源码安装、模板安装(一般 ¥50-300)服务答疑仅限SVIP用户
      3、单价超过200元的模板免费一次安装,需提供服务器信息。
      付费增值服务 1、提供dedecms模板、WordPress主题、discuz模板优化等服务请详询在线客服
      2、承接 WordPress、DedeCMS、Discuz 等系统建站、仿站、开发、定制等服务
      3、服务器环境配置(一般 ¥50-300)
      4、网站中毒处理(需额外付费,500元/次/质保三个月)
      售后服务时间 周一至周日(法定节假日除外) 9:00-23:00
      免责声明 本站所提供的模板(主题/插件)等资源仅供学习交流,若使用商业用途,请购买正版授权,否则产生的一切后果将由下载用户自行承担,有部分资源为网上收集或仿制而来,若模板侵犯了您的合法权益,请来信通知我们(Email: 80027422@qq.com),我们会及时删除,给您带来的不便,我们深表歉意!

    Hi, 如果你对这款模板有疑问,可以跟我联系哦!

    联系作者
    • 1067会员总数(位)
    • 20172资源总数(个)
    • 158本周发布(个)
    • 0 今日发布(个)
    • 410稳定运行(天)

    淘气哥素材网国内外拥有高端品质素材站长资源平台

    立即查看 了解详情
  • © 2020淘气哥素材网- & WordPress Theme. All rights reserved 沪ICP备20009926号

  • XML地图 | 站长导航